These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. Author: Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A. Journal: J Biol Chem; 1984 Sep 10; 259(17):10834-40. PubMed ID: 6088518. Abstract: The asparagine-linked sugar chains of the membrane of baby hamster kidney cells and their polyoma transformant were quantitatively released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides thus obtained were fractionated by paper electrophoresis. The neutral oligosaccharides of both cells were exclusively of high mannose type. The acidic oligosaccharides were bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6 (Man alpha 1----3) Man beta 1----4 GlcNAc beta 1----4 (+/- Fuc alpha 1----6) GlcNAc as their cores and Gal beta 1----4 GlcNAc and various lengths of Gal beta 1----4 GlcNAc repeating chains in their outer-chain moieties. Prominent features of these acidic oligosaccharides are that all sialic acid residues were N-acetylneuraminic acid and were linked exclusively at C-3 of the nonreducing terminal galactose residues of the outer chains. Comparative study of oligosaccharides of the two cells by Bio-Gel P-4 column chromatography revealed that transformation of baby hamster kidney cells leads to a reduction in high mannose-type oligosaccharides and an increase in tetraantennary oligosaccharides. Increase of the outer chains linked at C-6 of the Man alpha 1----6 residue of the core is the cause of increase in the relative amount of highly branched oligosaccharides in the polyoma transformant.[Abstract] [Full Text] [Related] [New Search]