These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Minimal functional unit for transport and enzyme activities of (Na+ + K+)-ATPase as determined by radiation inactivation.
    Author: Karlish SJ, Kempner ES.
    Journal: Biochim Biophys Acta; 1984 Oct 03; 776(2):288-98. PubMed ID: 6089887.
    Abstract:
    Frozen aqueous suspensions of partially purified membrane-bound renal (Na+ + K+)-ATPase have been irradiated at -135 degrees C with high-energy electrons. (Na+ + K+)-ATPase and K+-phosphatase activities are inactivated exponentially with apparent target sizes of 184 +/- 4 kDa and 125 +/- 3 kDa, respectively. These values are significantly lower then found previously from irradiation of lyophilized membranes. After reconstitution of irradiated (Na+ + K+)-ATPase into phospholipid vesicles the following transport functions have been measured and target sizes calculated from the exponential inactivation curves: ATP-dependent Na+-K+ exchange, 201 +/- 4 kDa; (ATP + Pi)-activated Rb+-Rb+ exchange, 206 +/- 7 kDa and ATP-independent Rb+-Rb+ exchange, 117 +/- 4 kDa. The apparent size of the alpha-chain, judged by disappearance of Coomassie stain on SDS-gels, lies between 115 and 141 kDa. That for the beta-glycoprotein, though clearly smaller, could not be estimated. We draw the following conclusions: (1) The simplest interpretation of the results is that the minimal functional unit for (Na+ + K+)-ATPase is alpha beta. (2) The inactivation target size for (Na+ + K+)-dependent ATP hydrolysis is the same as for ATP-dependent pumping of Na+ and K+. (3) The target sizes, for K+-phosphatase (125 kDa) and ATP-independent Rb+-Rb+ exchange (117 kDa) are indistinguishable from that of the alpha-chain itself, suggesting that cation binding sites and transport pathways, and the p-nitrophenyl phosphate binding site are located exclusively on the alpha-chain. (4) ATP-dependent activities appear to depend on the integrity of an alpha beta complex.
    [Abstract] [Full Text] [Related] [New Search]