These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Author: Minetti M, Ceccarini M, Di Stasi AM.
    Journal: J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481.
    Abstract:
    The hypothesis of a correlation between the effects of temperature on red blood cells hypotonic hemolysis and hypertonic cryohemolysis and two thermotropic structural transitions evidenced by EPR studies has been tested. Hypertonic cryohemolysis of red blood cells shows critical temperatures at 7 degrees C and 19 degrees C. In hypotonic solution, the osmotic resistance increases near 10 degrees C and levels off above 20 degrees C. EPR studies of red blood cell membrane of a 16-dinyloxyl stearic acid spin label show, in the 0-50 degrees C range, the presence of three thermotropic transitions at 8, 20, and 40 degrees C. Treatments of red blood cells with acidic or alkaline pH, glutaraldehyde, and chlorpromazine abolish hypertonic cryohemolysis and reduce the effect of temperature on hypotonic hemolysis. 16-Dinyloxyl stearic acid spectra of red blood cells treated with glutaraldehyde and chlorpromazine show the disappearance of the 8 degrees C transition. Both the 8 degrees C and the 20 degrees C transitions were abolished by acidic pH treatment. The correlation between the temperature dependence of red blood cell lysis and thermotropic breaks might be indicative of the presence of structural transitions producing areas of mismatching between differently ordered membrane components where the osmotic resistance is decreased.
    [Abstract] [Full Text] [Related] [New Search]