These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A voltage-clamp analysis of currents underlying cyclic AMP-induced membrane modulation in isolated peptidergic neurons of Aplysia.
    Author: Kaczmarek LK, Strumwasser F.
    Journal: J Neurophysiol; 1984 Aug; 52(2):340-9. PubMed ID: 6090605.
    Abstract:
    A variety of chemical and electrophysiological evidence indicates that the onset of afterdischarge and the subsequent profound enhancement of spike broadening that occur in the bag cell neurons of Aplysia are related to an increase in adenosine 3',5'-monophosphate-(cAMP) dependent protein phosphorylation. We have now used a two-electrode voltage clamp to study the properties of isolated bag cell neurons in cell culture and their response to 8 benzylthio-cAMP (8BTcAMP) and N6-n-butyl 8BTcAMP. These membrane-permeant and phosphodiesterase-resistant cAMP analogs induce spontaneous discharge and spike broadening in both the intact bag cell cluster and isolated bag cell neurons in cell culture. The dominant inward current in these cultured cells was found to be the calcium current, Ica, which was abolished by Co2+ (20 mM) or Ni2+ (10 mM) and could be observed in Na+-free media. In a minority of cells (2 of 12), in normal ionic media, a transient inward current was observed that was unaffected by Co2+ and Ni2+ and probably represents a sodium current. The three characterized potassium currents, the delayed rectifying current IK, the calcium-dependent current IC, and the early transient current IA, distinguished by their differing pharmacological and voltage-activation properties, were present in all healthy cells. Three effects of the cyclic AMP analogs (0.5 mM) on the electrical properties of these cells were 1) the emergence of a region of negative slope resistance in the steady-state I-V relations, 2) a depression of the net sustained outward currents due to depolarizing commands, and 3) a marked reduction in IA. When outward currents had been largely suppressed using high concentrations of tetraethylammonium (TEA) ions (100-460 mM) no effects of the cyclic AMP analogs could be observed on peak inward currents using NA+ and Ca2+ or Ba2+ as carriers of inward current. At least part of these electrical effects of the cyclic AMP analogs could be accounted for by a depression of a delayed potassium current and the A current.
    [Abstract] [Full Text] [Related] [New Search]