These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions.
    Author: Almers W, McCleskey EW, Palade PT.
    Journal: J Physiol; 1984 Aug; 353():565-83. PubMed ID: 6090645.
    Abstract:
    Membrane currents were recorded from voltage-clamped, EGTA-loaded muscle fibres under conditions where currents through ordinary Na+, K+ and Cl- channels were prevented by drugs or by absence of permeant ions (K+, and Cl-). At 10 mM-external [Ca2+], substitution of Na+ for the large and presumably impermeant organic cations tetramethyl- (TMA+) or tetraethylammonium (TEA+) failed to increase peak inward current. Hence the Ca2+ channel was not significantly permeable to Na+ under these conditions. When external [Ca2+] was reduced to levels below 1 microM in the presence of external Na+, step depolarizations to negative potentials produced tetrodotoxin-resistant inward currents. At -20 mV, they rose to a peak of 30-200 microA/cm2 within 150 ms and declined thereafter. Ca2+ and several other divalent cations reversibly blocked this inward current. The sequence of blocking potencies was Ca2+ greater than Sr2+ greater than or equal to Co2+ greater than Mn2+ congruent to Cd2+ greater than Ni2+ congruent to Mg2+. Large inward currents may be carried by Li+, Na+, K+, Rb+ and Cs+ but not by TMA+ and TEA+. The effect of external Ca2+ ([Ca2+]o) was explored over a 10(8)-fold range in concentrations. Na+ was present at a fixed concentration. When [Ca2+]o was gradually increased from 10(-10) to 10(-2) M, inward current first diminished 10-fold, reached a minimum at [Ca2+]o = 60 microM and then increased again as [Ca2+]o was increased further and Ca2+ itself became a current carrier. Block of inward current at [Ca2+]o less than 10(-5) M could be described by binding of a single Ca2+ to a site, with a dissociation constant of the order of 0.7 microM at -20 mV.
    [Abstract] [Full Text] [Related] [New Search]