These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na+ + K+)-ATPase. Author: Vrbjar N, Soós J, Ziegelhöffer A. Journal: Gen Physiol Biophys; 1984 Aug; 3(4):317-25. PubMed ID: 6094300. Abstract: he secondary structure of membrane proteins was studied in rat heart sarcolemma by circular dichroism under conditions of interaction with metallic cofactors of (Na+ + K+)-ATPase at their optimal concentrations and under metal free conditions. Approximately 80 per cent of polypeptide chains in the membrane were organized in alpha-helical structure. Upon stabilizing the E1. Na conformation state of (Na+ + K+)-ATPase by Mg2+ and Na+ ions, only a slight increase in the protein alpha-helix content (to 83 per cent) was observed. On the other hand, simultaneous addition of Mg2+ and K+ ions resulting in the establishment of the E2 . K conformational state of the enzyme, was followed by a significant decrease in the membrane protein helicity (to 72 per cent). The presence of all three metallic cofactors of (Na+ + K+)-ATPase did not induce any further conformational change in sarcolemmal proteins as compared to the state induced by the interaction with Mg2+ and Na+ ions. In contrast to results obtained with Mg2+ ions, the interaction of Na+ with the sarcolemmal membranes led to a considerable decrease and that of K+ to a significant increase in alpha-helicity of the membrane polypeptides. These findings have confirmed the regulatory role of magnesium in transition of the conformational state from E1 to E2 in the reaction sequence of (Na+ + K+)-ATPase. Specific modulation by Na+ and K+ of the helicity of sarcolemmal proteins in the presence of Mg2+ and in the absence of ATP might be considered as a preprint of conformational changes which will occur in the presence of ATP.[Abstract] [Full Text] [Related] [New Search]