These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stereochemical studies on the cytochrome P-450 and hydroxyl radical dependent pathways of 2-butanol oxidation by microsomes from chow-fed, phenobarbital-treated, and ethanol-treated rats.
    Author: Krikun G, Cederbaum AI.
    Journal: Biochemistry; 1984 Nov 06; 23(23):5489-94. PubMed ID: 6095901.
    Abstract:
    Microsomes have the potential to oxidize alcohols by two pathways, one dependent on hydroxyl radicals (.OH) and the other dependent on cytochrome P-450 in which .OH does not seem to be involved. The possibility that these two pathways may display differences in stereospecificity was evaluated by comparing the oxidation of (+)-2-butanol, (-)-2-butanol, and racemic 2-butanol. Microsomes oxidized 2-butanol to 2-butanone by a reaction which was partially sensitive to carbon monoxide and to competitive .OH scavengers. Desferrioxamine, which completely blocks the production of .OH by microsomes, inhibited the oxidation of ethanol by about 60%, while the oxidation of 2-butanol and 1-butanol was decreased by only 30%. Vmax values for the oxidation of ethanol, 1-butanol, and 2-butanol were 17.7, 6.2, and 23.8 nmol min-1 (mg of protein)-1, respectively, in the absence of desferrioxamine and 5.9, 4.7, and 13.6 nmol min-1 (mg of protein)-1, respectively, in the presence of desferrioxamine. 2-Butanol appears to be a particularly good alcohol substrate for the cytochrome P-450 dependent pathway of alcohol oxidation. Chronic ethanol consumption, which induces the microsomal alcohol oxidizing system, resulted in a 3-fold increase in the rate of 2-butanol oxidation. Most of this increment reflected an increased rate of metabolism by the cytochrome P-450 pathway. A type 2 binding spectrum was observed for the interaction of 2-butanol with microsomes from ethanol-fed rats, but not with controls.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]