These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron-paramagnetic-resonance spectroscopy studies on the dissimilatory nitrate reductase from Pseudomonas aeruginosa. Author: Godfrey C, Greenwood C, Thomson AJ, Bray RC, George GN. Journal: Biochem J; 1984 Dec 01; 224(2):601-8. PubMed ID: 6097225. Abstract: Preparations of nitrate reductase in the resting state from Pseudomonas aeruginosa exhibit an Mo(V) e.p.r. signal. Progressive reduction of the enzyme results at first in the intensification and then in the disappearance of the signal. Three different species of Mo(V) were detected by e.p.r. These are the high-pH species (g1 = 1.9871; g2 = 1.9795; g3 = 1.9632) and nitrate and nitrite complexes of a low-pH species (respectively g1 = 2.0004; g2 = 1.9858; g3 = 1.9670; and g1 = 1.9975; g2 = 1.9848; g3 = 1.9652). These signals are closely analogous to those for the enzyme from Escherichia coli described by Vincent & Bray [(1978) Biochem. J. 171, 639-647]. Signals typical of iron-sulphur clusters were also detected. In the oxidized enzyme these are believed to arise from a [3Fe-4S] cluster (g = 2.01) and in the reduced enzyme from an unusual low-potential [4Fe-4S]+ cluster (g1 = 2.054; g2 = 1.952; g3 = 1.878). The iron-sulphur centres were also studied in a 'high-catalytic-activity' form of the enzyme. Reduction with Na2S2O4 resulted in the formation of a complex signal with g values at 2.054, 1.952, 1.928, 1.903 and 1.878. The signal could be deconvoluted by reductive titration of the enzyme into two species (g1 = 2.054; g2 = 1.952; g3 = 1.878; and g1 = 2.036; g2 = 1.928; g3 = 1.903). The degradation of a [4Fe-4S] into a [3Fe-4S] cluster in the enzyme is suggested by these studies, the process being dependent on the method used to purify the enzyme. The addition of nitrate to the reduced enzyme results in the oxidation of Mo(IV) to Mo(V) and of all the iron-sulphur centres.[Abstract] [Full Text] [Related] [New Search]