These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ease of solubilization of five marker enzymes in three preparations of rat renal brush border membranes. Author: Hsu BY, McNamara PD, Schlesinger H, Pepe LM, Marshall CM, Segal S. Journal: Enzyme; 1980; 25(3):170-81. PubMed ID: 6105074. Abstract: The ability of eight stripping agents to solubilize five marker enzymes from rat renal brush border membranes isolated by three different preparative methods was examined. Protein and enzyme activities - alkaline phosphatase (APase), L-leucine aminopeptidase (LAPase), gamma-glutamyl transpeptidase (GGTase), gamma-glutamyl hydrolase (GGHase) and maltase - solubilized by the treatments were expressed as percent of total activity recovered in excess of control values. The relative enzyme activity and the solubilization factor were determined for each marker enzyme in every treated sample and the treatments with the eight agents compared. Trypsin treatment released > 80% of LAPase and < 10% of total membrane protein. Papain treatment released only 16--23% of total membrane protein but most of the enzyme activities except APase. Neuraminidase had no solubilizing effect. 4--10% of total membrane protein was solubilized by LiCl treatment but no marker enzyme activities were released. Less total membrane protein was released by treatment with proteolytic enzymes or LiCl than with the detergents Triton X-100, hexadecyltrimethylammonium bromide, sodium deoxycholate, and sodium dodecylsulfate. APase activity was the least readily solubilized. Correlating the degree of solubilization for five marker enzymes with the types of stripping agents used and with the appearance of the membrane surface when examined by electron microscopy led to the suggestion that LAPase, GGTase, GGHase and maltase molecules are part of an interwoven surface layer of membrane proteins which can be disrupted by transamidation and transesterification reactions. APase appears to be more strongly associated with the intact lipid matrix than the bulk of the membrane protein.[Abstract] [Full Text] [Related] [New Search]