These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity.
    Author: Martin GF, Cabana T, Humbertson AO, Laxson LC, Panneton WM.
    Journal: J Comp Neurol; 1981 Mar 10; 196(4):663-82. PubMed ID: 6110678.
    Abstract:
    Retrograde and orthograde transport techniques show that the nucleus reticularis gigantocellularis pars ventralis and the nucleus reticularis gigantocellularis project the entire length of the spinal cord. Double-labelling methods show that some of the neurons in each area innervate both cervical and lumbar levels. There is evidence, however, that neurons in the lateral part of the nucleus reticularis gigantocellularis pars ventralis and the dorsal extreme of the nucleus reticularis gigantocellularis project mainly to cervical and thoracic levels. The autoradiographic method shows that the above nuclei supply direct innervation to somatic and autonomic motor columns as well as to laminae V-VIII and X. The nucleus reticularis gigantocellularis pars ventralis provides additional projections to lamina I and the outer part of lamina II. Several areas of the medullary reticular formation project mainly, and in some cases exclusively, to cervical and thoracic levels. These areas include the nucleus reticularis parvocellularis, the nucleus reticularis lateralis, the nucleus retrofacialis, the nucleus ambiguus, the nucleus lateralis reticularis, caudal parts of the nuclei reticularis medullae oblongatae dorsalis and ventralis, and the nucleus supraspinalis. Autoradiographic experiments reveal that neurons in the ventrolateral medulla, particularly rostrally (the nucleus reticularis lateralis and neurons related to the nucleus lateralis reticularis), innervate sympathetic nuclei. Our results indicate that spinal projections from bulbar areas of the reticular formation are more complicated than previously supposed. Axons from separate areas project to different spinal levels and in some cases to different nuclear targets. These data are in conformity with the evolving concept of reticular heterogeneity.
    [Abstract] [Full Text] [Related] [New Search]