These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prostaglandin D synthase in microvessels from the rat cerebral cortex. Author: Gerritsen ME, Printz MP. Journal: Prostaglandins; 1981 Oct; 22(4):553-66. PubMed ID: 6119739. Abstract: Microvessels, a mixture composed predominantly of small arterioles and capillaries (7-80 micro diameter), were isolated from the rat cerebral cortex by selective nylon sieving and glass bead elutriation. The morphology and purity of the microvessel and cerebral cortex filtrate (virtually free of vascular contamination) were monitored by light microscopy and by the activity of several enzymes: gamma -glutamyl transpeptidase, GSH-S-transferase, prostacyclin synthase and PGD synthase. Prostacyclin and PGD synthesizing activities as well as gamma-glutamyl transpeptidase activity were localized to the microvessels of the rat cerebral cortex whereas GSH-S-Transferase was restricted to the non-vascular filtrate fraction. The characteristics of the PGD synthase were similar to those of the purified enzyme previously described for the rat brain. The microvessel (MV) PGD synthase was localized to the cytosol fraction of the microvessels and did not require reduced glutathione for activity. The enzyme was inhibited by pre-incubation with p-hydroxymercuribenzoate (ImM) or N-ethylmaleimide (ImM). The MV RGD synthase saturated at 15-20 microM PGH2, exhibited an apparent Km of 9.6 microM, and a pH optimum of 8.0-8.1. These findings suggest roles for both prostacyclin and PGD synthesis by the rat cerebral vasculature in the autoregulation of cerebral blood flow and/or neural function. These studies also indicate that the major source of PGI2 and PGD2 synthesis by rat brain homogenates is the microvasculature.[Abstract] [Full Text] [Related] [New Search]