These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thiazolidine-2-carboxylic acid, an adduct of cysteamine and glyoxylate, as a substrate for D-amino acid oxidase.
    Author: Fitzpatrick PF, Massey V.
    Journal: J Biol Chem; 1982 Feb 10; 257(3):1166-71. PubMed ID: 6120164.
    Abstract:
    A mixture of cysteamine and glyoxylate, proposed by Hamilton et al. to form the physiological substrate of hog kidney D-amino acid oxidase (Hamilton, G. A., Buckthal, D. J., Mortensen, R. M., and Zerby, K. W. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 2625-2629), was confirmed to act as a good substrate for the pure enzyme. As proposed by those workers, it was shown that the actual substrate is thiazolidine-2-carboxylic acid, formed from cysteamine and glyoxylate with a second order rate constant of 84 min-1 M-1 at 37 degrees C, pH 7.5. Steady state kinetic analyses reveal that thiazolidine-2-carboxylic acid is a better substrate at pH 8.5 than at pH 7.5. At both pH values, the catalytic turnover number is similar to that obtained with D-proline. D-Amino acid oxidase is rapidly reduced by thiazolidine-2-carboxylic acid to form a reduced enzyme-imino acid complex, as is typical with D-amino acid oxidase substrates. The product of oxidation was shown by NMR to be delta 2-thiazoline-2-carboxylic acid. Racemic thiazolidine-2-carboxylic acid is completely oxidized by the enzyme. The directly measured rate of isomerization of L-thiazolidine-2-carboxylic acid to the D-isomer was compared to the rate of oxidation of the L-isomer by D-amino acid oxidase. Their identity over the range of temperature from 2-30 degrees C established that the apparent activity with the L-amino acid can be explained quantitatively by the rapid, prior isomerization to D-thiazolidine-2-carboxylic acid.
    [Abstract] [Full Text] [Related] [New Search]