These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Author: Novogrodsky A, Ravid A, Rubin AL, Stenzel KH. Journal: Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1171-4. PubMed ID: 6122209. Abstract: Agents that are known to be scavengers of hydroxyl radicals inhibit lymphocyte mitogenesis induced by phorbol myristate acetate (PMA) to a greater extent than they inhibit mitogenesis induced by concanavalin A or phytohemagglutinin. These agents include dimethyl sulfoxide, benzoate, thiourea, dimethylurea, tetramethylurea, L-tryptophan, mannitol, and several other alcohols. Their inhibitory effect is not associated with cytotoxicity. The hydroxyl radical scavengers do not inhibit PMA-dependent amino acid transport in T cells or PMA-induced superoxide production by monocytes. Thus, they do not inhibit the primary interaction of PMA with responding cells. Treatment of peripheral blood mononuclear cells with PMA increased cellular guanylate cyclase in most experiments, and dimethyl sulfoxide tended to inhibit this increase. In addition to inhibition of PMA-induced mitogenesis, hydroxyl radical scavengers markedly inhibited the activity of lymphocyte activating factor (interleukin 1). The differential inhibition of lymphocyte mitogenesis induced by different mitogens appears to be related to the differential macrophage requirements of the mitogens. The data suggest that hydroxyl radicals may be involved in mediating the triggering signal for lymphocyte activation. Some of the hydroxyl radical scavengers are inducers of cellular differentiation,. nd it is possible that their differentiating activity is related to their ability to scavenge free radicals.[Abstract] [Full Text] [Related] [New Search]