These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The calmodulin hypothesis of neurotransmission.
    Author: DeLorenzo RJ.
    Journal: Cell Calcium; 1981 Aug; 2(4):365-85. PubMed ID: 6122506.
    Abstract:
    Ca2+ plays a major role in neurotransmission and synaptic modulation. Evidence is presented to support the calmodulin hypothesis of neurotransmission developed in this laboratory stating that calmodulin, a major Ca2+ binding protein in brain, mediates the effects of Ca2+ on neurotransmission. Calmodulin was isolated from highly enriched preparations of synaptic vesicles and nerve terminal cytoplasm. Ca2+ and calmodulin were shown to regulate several synaptic processes in isolated and intact preparations, including endogenous synaptic Ca2+-calmodulin protein kinase activity, neurotransmitter release, and synaptic vesicle and synaptic membrane interactions. Ca2+ and calmodulin were shown to activate a synaptic tubulin kinase system which was shown to be a distinct enzyme system from the cyclic AMP protein kinase. Ca2+ and calmodulin stimulated phosphorylation of tubulin altered the properties of tubulin, forming insoluble tubulin fibrils. Evidence for the role of Ca2+-calmodulin kinase activity, especially the calmodulin-tubulin kinase, in neurotransmission are presented. The effects of several neuroactive drugs on the synaptic calmodulin system are presented. The results support the hypothesis that calmodulin mediates many of calcium's actions at the synapse, and that the effects of Ca2+ on synaptic protein phosphorylation, especially synaptic tubulin, may provide a biochemical mechanism for converting the Ca2+ signal into a motor force in the process of neurotransmission.
    [Abstract] [Full Text] [Related] [New Search]