These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reciprocal interactions of somatostatin with thyrotropin-releasing hormone and vasoactive intestinal peptide on prolactin and growth hormone secretion in vitro.
    Author: Enjalbert A, Epelbaum J, Arancibia S, Tapia-Arancibia L, Bluet-Pajot MT, Kordon C.
    Journal: Endocrinology; 1982 Jul; 111(1):42-7. PubMed ID: 6123432.
    Abstract:
    Reciprocal interactions of somatostatin (SRIF) and vasoactive intestinal peptide (VIP) or TRH on in vitro PRL and GH release from male rats hemipituitaries were investigated. SRIF did not modify basal PRL release, but TRH- or VIP-induced release was inhibited by SRIF in a dose-dependent manner [effective concentration-fifty (EC50) = 1.7 +/- 0.9 nM for SRIF inhibition of TRH stimulation and EC50 = 0.8 +/- 0.5 nM for SRIF inhibition of VIP stimulation]. VIP and TRH did not affect GH release by themselves, but reduced the inhibition of GH secretion elicited by SRIF (EC50 = 7.6 +/- 3.4 nM for TRH blockade of SRIF inhibition and EC50 = 4.6 +/- 3.1 nM for VIP blockade of SRIF inhibition). Secretin, a partial structural analog of VIP, also blocked SRIF-induced inhibition of GH and stimulated PRL release. Secretin stimulation of PRL release was also prevented by SRIF. [D-Trp8,D-Cys14]SRIF, a potent analog of SRIF, antagonized VIP stimulation of PRL secretion with the same apparent affinity as the native peptide. The maximal stimulation, but not the apparent affinity of VIP action on prolactin release was reduced by SRIF, suggesting that the interaction is of a noncompetitive nature. This conclusion as further substantiated by the observation that neither TRH nor VIP were able to displace specific 125I-labeled [Tyr1] SRIF high affinity binding to pituitary membranes. The three peptides tested thus appear to exhibit reciprocal interactions mediated by independent receptor sites on GH as well as on PRL-producing cells.
    [Abstract] [Full Text] [Related] [New Search]