These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of glutamine synthetase activity and synthesis in free-living and symbiotic Anabaena spp.
    Author: Orr J, Haselkorn R.
    Journal: J Bacteriol; 1982 Nov; 152(2):626-35. PubMed ID: 6127334.
    Abstract:
    Regulation of the synthesis and activity of glutamine synthetase (GS) in the cyanobacterium Anabaena sp. strain 7120 was studied by determining GS transferase activity and GS antigen concentration under a variety of conditions. Extracts prepared from cells growing exponentially on a medium supplemented with combined nitrogen had a GS activity of 17 mumol of gamma-glutamyl transferase activity per min per mg of protein at 37 degrees C. This activity doubled in 12 h after transfer of cells to a nitrogen-free medium, corresponding to the time required for heterocyst differentiation and the start of nitrogen fixation. Addition of NH3 to a culture 11 h after an inducing transfer immediately blocked the increase in GS activity. In the Enterobacteriaceae, addition of NH3 after induction results in the covalent modification of GS by adenylylation. The GS of Anabaena is not adenylylated by such a protocol, as shown by the resistance of the transferase activity of the enzyme to inhibition by Mg2+ and by the failure of the enzyme to incorporate 32P after NH3 upshift. Methionine sulfoximine inhibited Anabaena GS activity rapidly and irreversibly in vivo. After the addition of methionine sulfoximine to Anabaena, the level of GS antigen neither increased nor decreased, indicating that Glutamine cannot be the only small molecule capable of regulating GS synthesis. Methionine sulfoximine permitted heterocyst differentiation and nitrogenase induction to escape repression by NH3. Nitrogen-fixing cultures treated with methionine sulfoximine excreted NH3. The fern Azolla caroliniana contains an Anabaena species living in symbiotic association. The Anabaena species carries out nitrogen fixation sufficient to satisfy all of the combined nitrogen requirements of the host fern. Experiments by other workers have shown that the activity of GS in the symbiont is significantly lower than the activity of GS in free-living Anabaena. Using a sensitive radioimmune assay and a normalization procedure based on the content of diaminopimelic acid, a component unique to the symbiont, we found that the level of GS antigen in the symbiont was about 5% of the level in free-living Anabaena cells. Thus, the host fern appears to repress synthesis of Anabaena GS in the symbiotic association.
    [Abstract] [Full Text] [Related] [New Search]