These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Desensitization of adenylate cyclase and down regulation of beta adrenergic receptors after in vivo administration of beta agonist.
    Author: Scarpace PJ, Abrass IB.
    Journal: J Pharmacol Exp Ther; 1982 Nov; 223(2):327-31. PubMed ID: 6127402.
    Abstract:
    In vitro incubation of cells with catecholamines leads to both down regulation of beta adrenergic receptor number and desensitization of agonist-stimulated adenylate cyclase activity. These same parameters, down regulation of beta adrenergic receptor number and desensitization of adenylate cyclase activity were assessed in rat lung membranes after in vivo administration of metaproterenol, a beta-2 selective agonist. In vivo treatment with metaproterenol leads to: 1) reduced beta adrenergic receptor number; 2) reduced isoproterenol-stimulated adenylate cyclase activity; 3) unaffected NaF or 5'-guanylylimidodiphosphate-stimulated adenylate cyclase activity; and 4) reduced affinity of the receptor for isoproterenol similar to the affinity observed in the presence of 5'-guanylylimidodiphosphate. The date suggest that in vivo metaproterenol administration results in an uncoupled receptor-adenylate cyclase complex. The effects of in vivo administration of the glucocorticoid, methylprednisolone, to metaproterenol-pretreated animals were also assessed. Glucocorticoid treatment was associated with 1) increased beta adrenergic receptor number in rats in which the receptors have been down regulated, 2) increased isoproterenol responsiveness in agonist-desensitized rats and 3) no effect on agonist affinity in desensitized animals. These data suggest that the restoration of agonist responsiveness by glucocorticoids in the catecholamine refractive state is not simply a reversal of receptor down regulation or adenylate cyclase desensitization.
    [Abstract] [Full Text] [Related] [New Search]