These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics of glutamate efflux in rat liver mitochondria.
    Author: Hoek JB, Coll KE, Williamson JR.
    Journal: J Biol Chem; 1983 Jan 10; 258(1):54-8. PubMed ID: 6129254.
    Abstract:
    The transport of glutamate was studied in isolated rat liver mitochondria preloaded with glutamate in the presence of respiratory inhibitors. Glutamate efflux was initiated by dilution of the loaded mitochondria into a glutamate-free medium, and the rate of transport was measured by following the disappearance of glutamate from the mitochondrial matrix following rapid centrifugation through silicone oil. Glutamate efflux was inhibited extensively by bromcresol purple and partially by N-ethylmaleimide, compounds which are both known to inhibit mitochondrial glutamate uptake. The efflux process was stereospecific for L-glutamate and exhibited an activation energy of 19.2 kcal/mol. The rate of glutamate efflux was not affected by changes in the mitochondrial membrane potential. However, a good correlation was observed between the rate of glutamate efflux and the matrix pH, the efflux rate being stimulated by a decrease in matrix pH in the range from 8.0 to 7.2. In contrast, acidification of the incubation medium in the pH range 7.4 to 6.5 inhibited the rate of glutamate efflux. A kinetic analysis was made of the efflux reaction by a computer curve-fitting procedure which fits the experimental data to an integrated rate equation (Williamson, J.R., and Viale, R.O. (1979) Methods Enzymol. 56, 252-278). The results indicated that a fall in the matrix pH primarily caused a decrease in the K'm for matrix glutamate, with little change in V'max. In contrast, a low external pH had an effect on the V'max but not on the K'm for intramitochondrial glutamate. The results are in agreement with a symmetrical sequential model of glutamate transport where the glutamate anion binds to the protonated carrier.
    [Abstract] [Full Text] [Related] [New Search]