These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium transport and phosphorylated intermediate of (Ca2+ + Mg2+)-ATPase in plasma membranes of rat liver. Author: Chan KM, Junger KD. Journal: J Biol Chem; 1983 Apr 10; 258(7):4404-10. PubMed ID: 6131893. Abstract: We have identified and characterized calcium transport and the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in plasma membrane vesicles prepared from rat liver. The calcium transport did not absolutely require the presence of oxalate and was completely inhibited by 1 microM of ionophore A23187. Oxalate, which serves as a trapping agent in calcium uptake of skeletal muscle and liver microsomes, was not absolutely required to maintain the net accumulation of calcium. The Vmax and Km for calcium uptake were 35.2 +/- 10.1 pmol of calcium/mg of protein/min, and 17.6 +/- 2.5 nM of free calcium, respectively. Ten mM magnesium was required for the maximal accumulation of calcium. Substitution of 5 and 10 mM ADP, CTP, GTP, and UTP for ATP could not support calcium uptake. The calcium uptake was not affected by 0.5 mM ouabain, 20 mM azide, or 2 micrograms/ml of oligomycin but was inhibited in a dose-dependent fashion by vanadate, with a Ki of approximately 20 microM for vanadate. The substrate affinities and specificities of this calcium-transport activity suggest that it is closely associated with the (Ca2+ + Mg2+)-ATPase reported in the plasma membranes of liver (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215). A calcium-stimulated and magnesium-dependent phosphoprotein was also demonstrated in the same membrane vesicles. The free calcium concentration at which its phosphorylation was half-maximal was 15.5 +/- 5.6 nM. Sodium fluoride, ouabain, sodium azide, oligomycin, adriamycin, and N,N'-dicyclohexylcarbodiimide did not affect its formation while vanadate at 100 microM inhibited the calcium-dependent phosphorylation by approximately 60%. The properties of this phosphoprotein suggest that it may be the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in the plasma membranes of rat liver.[Abstract] [Full Text] [Related] [New Search]