These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Somatostatin depletion of the gut and pancreas induced by cysteamine is not prevented by vagotomy or by dopamine agonists. Author: Szabo S, Reichlin S. Journal: Regul Pept; 1983 Apr; 6(1):43-9. PubMed ID: 6135242. Abstract: The role of endogenous somatostatin in the pathogenesis of duodenal was investigated in the present study by using the cysteamine animal model of the disease. Our previous studies showed a rapid and multiorgan depletion of somatostatin immunoreactivity (SIR) in rats given a single dose of duodenal ulcerogen cysteamine. We now determined whether acetylcholinergic and dopaminergic modulation (both known to influence the development of duodenal ulcer) are accompanied by modification of cysteamine-induced SIR depletion in rat organs. Vagotomy performed either 1 or 18 h before cysteamine administration did not interfere with the chemically induced SIR decrease in pancreas, gastric and duodenal mucosa. Vagal denervation alone had no marked influence on SIR levels but if combined with cysteamine, the SIR depletion in the stomach was significantly more pronounced than after the duodenal ulcerogen alone. Pretreatment with the dopamine agonists bromocriptine or lergotrile (known to prevent the chemically induced duodenal ulcers) did not influence the SIR depletion by cysteamine. Thus cysteamine depletes endogenous somatostatin in peripheral organs (e.g., stomach, duodenum, pancreas) by mechanisms independent of both vagus nerve and dopamine agonists. A role of central somatostatin depletion leading to disinhibition of vagus is also considered in the pathogenesis of experimental duodenal ulcer.[Abstract] [Full Text] [Related] [New Search]