These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondrial 2-oxoacid dehydrogenase complexes of animal tissues. Author: Randle PJ. Journal: Philos Trans R Soc Lond B Biol Sci; 1983 Jul 05; 302(1108):47-57. PubMed ID: 6137008. Abstract: The pyruvate dehydrogenase and branched-chain 2-oxoacid dehydrogenase complexes of animal mitochondria are inactivated by phosphorylation of serine residues, and reactivated by dephosphorylation. In addition, phosphorylated branched-chain complex is reactivated, apparently without dephosphorylation, by a protein or protein-associated factor present in liver and kidney mitochondria but not in heart or skeletal muscle mitochondria. Interconversion of the branched-chain complex may adjust the degradation of branched-chain amino acids in different tissues in response to supply. Phosphorylation is inhibited by branched-chain ketoacids, ADP and TPP. The pyruvate dehydrogenase complex is almost totally inactivated (99%) by starvation or diabetes, the kinase reactions being accelerated by products of fatty acid oxidation and by a protein or protein-associated factor induced by starvation or diabetes. There are three sites of phosphorylation, but only sites 1 and 2 are inactivating. Site 1 phosphorylation accounts for 98% of inactivation except during dephosphorylation when its contribution falls to 93%. Sites 2 and 3 are only fully phosphorylated when the complex is fully inactivated (starvation, diabetes). Phosphorylation of sites 2 and 3 inhibits reactivation by phosphatase. The phosphatase reaction is activated by Ca2+ (which may mediate effects of muscle work) and possibly by uncharacterized factors mediating insulin action in adipocytes.[Abstract] [Full Text] [Related] [New Search]