These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cellular enzymatic differentiation in brain vessels of normal and protein-deprived rats. Biochemical studies. Author: Conradi NG, Engvall J, Karlsson B. Journal: Acta Neuropathol; 1983; 60(3-4):159-66. PubMed ID: 6137125. Abstract: Brain capillary development was studied in normal and protein-deprived rats using the specific activity of alkaline phosphatase (EC 3.1.3.1) and gamma-glutamyl transpeptidase (EC 2.3.2.1) in whole brain homogenates and microvessels obtained by gradient centrifugation according to Orlowski et al. (1974). Pre- and postnatal protein deprivation was induced by a 50% reduction in the dietary protein content. The density of microvessel fragments changed during development. Most of the early developmental increase in the specific activity of both enzymes in whole brain homogenates of normal rats can probably be explained by a rapid formation of new capillary segments. The increase in specific activity of gamma-glutamyl transpeptidase in microvessels was interpreted as a sign of cellular differentiation. Protein deprivation resulted in reduced specific activity of both enzymes in whole brain homogenates of 30-day-old rats, probably as a result of the decreased length per volume of the cerebral capillary network at this age (Conradi et al. 1979a). Signs of impaired endothelial growth were also present in the protein-deprived rats since the distribution of microvessel fragments in the 30-day-old protein-deprived rats was similar to that in 3-week-old normal rats. The specific activity of alkaline phosphatase was decreased in the microvessel fractions of 30- and 96-day-old protein-deprived rats, apparently signifying an effect of the protein deprivation on the endothelial cells. These effects of protein deprivation on the brain capillary endothelial transport system may have negative consequences for growth and function in the brain.[Abstract] [Full Text] [Related] [New Search]