These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding and uptake of concanavalin A into rat brain synaptosomes: evidence for synaptic vesicle recycling. Author: Gordon-Weeks PR, Jones DH. Journal: Proc R Soc Lond B Biol Sci; 1983 Oct 22; 219(1217):413-22. PubMed ID: 6139819. Abstract: The specific binding of radioiodinated concanavalin A (125I-con A) to rat brain synaptosomes was shown to be saturable. In the presence of excess on A binding was rapid and was completed within 5 min (t1/2 was 25 s) at 37 degrees C, and at saturation the amount bound did not change over time. Under the electron microscope, concanavalin A-ferritin (con A-ft) bound to synaptosomes in two regions: in the extra-junctional plasma membrane and within the synaptic cleft of Gray type 1 and 2 synapses. Synaptosomes incubated with con A-ft at 37 degrees C internalized bound lectin by endocytosis through coated pits. Endocytosis took place in the extra-junctional membrane, because it can occur before con A-ft has penetrated into the synaptic cleft, and continued for a considerable time (more than 30 min) after saturation of the receptor(s). Synaptic vesicles, which have at least two con A receptors on the internal aspect of their membranes, and cisternae, become labelled. When exocytosis was induced in synaptosomes by K+ depolarizations, synaptic vesicle con A receptors became incorporated into the plasma membrane and were labelled with 125I-con A causing a 2.5-fold increase in con A binding that was Ca2+ dependent. These experiments thus provide evidence for the transient incorporation of synaptic vesicle membrane glycoproteins into the plasma membrane during transmitter release.[Abstract] [Full Text] [Related] [New Search]