These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hormonal regulation of key gluconeogenic enzymes and glucose release in cultured hepatocytes: effects of dexamethasone and gastrointestinal hormones on glucagon action.
    Author: Fleig WE, Noether-Fleig G, Roeben H, Ditschuneit H.
    Journal: Arch Biochem Biophys; 1984 Feb 15; 229(1):368-78. PubMed ID: 6142694.
    Abstract:
    Hormonal regulation of key gluconeogenic enzymes and glucose release by glucagon, dexamethasone, secretin and somatostatin was evaluated in maintenance cultured rat hepatocytes. (i) Phosphoenolpyruvate (PEP)-carboxykinase activity declined rapidly during the first 24 h in serum- and hormone-free culture with a further slight decay during the following 2 days. Dexamethasone and glucagon independently increased PEP-carboxykinase and acted synergistically when added in combination. Glucose-6-phosphatase activity declining linearly during hormone-free culture was stimulated by glucagon. Dexamethasone itself was without significant effects but completely abolished glucagon action. Fructose-1,6-diphosphatase was maintained at its initial level during the first day under control conditions and declined thereafter. Neither glucagon nor dexamethasone affected total activity or substrate (fructose-1,6-diphosphate) affinity of this enzyme. In short-term experiments on cells cultured under control conditions, protein synthesis-dependent stimulation of PEP-carboxykinase by glucagon and the permissive action of dexamethasone was demonstrated. Glucose-6-phosphatase and fructose-1,6-diphosphatase were not altered by hormones within this period. (ii) Stimulation by glucagon of gluconeogenesis was independent of its action on PEP-carboxykinase. Dexamethasone inhibited glycogenolysis but maintained glucose release at control levels probably by stimulation of gluconeogenesis. When added in combination, the glycogen-preserving action of dexamethasone acutely reduced the glucose release in response to glucagon. Glucagon sensitivity remained unchanged. (iii) The gastrointestinal hormones secretin and somatostatin were ineffective in modulating basal or glucagon-stimulated glucose release and gluconeogenic key enzymes. They are therefore unlikely to play a physiological role in hepatic glucose metabolism.
    [Abstract] [Full Text] [Related] [New Search]