These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. Author: Rich DH, Moon BJ, Harbeson S. Journal: J Med Chem; 1984 Apr; 27(4):417-22. PubMed ID: 6142952. Abstract: Amastatin [(2S,3R)-3-amino-2-hydroxy-5-methylhexanoyl-L-valyl-L-valyl-L- aspartic acid] and bestatin [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-leucine] are slow-binding, competitive inhibitors of aminopeptidase M (AP-M) with net inhibition constants (Ki) of 1.9 X 10(-8) and 4.1 X 10(-6) M, respectively. The effect of inhibitor structure on net Ki and on slow-binding inhibition was evaluated for analogues of both inhibitors on AP-M and leucine aminopeptidase (LAP). The (2S)-hydroxyl group contributes to the stabilization of a collision complex [EI], which is formed rapidly. In contrast, increasing the peptide chain length of the inhibitor produces more potent inhibitors as a consequence of a slower binding process. A statine analogue of amastatin [(3S,4S)-Sta-Val-Val-Asp] stimulated rather than inhibited LAP. AP-M binds tri- and tetrapeptide inhibitors more strongly than dipeptide inhibitors, whereas LAP binds dipeptide inhibitors more strongly. The difference in binding can be used to distinguish cytosolic from membrane-bound aminopeptidases.[Abstract] [Full Text] [Related] [New Search]