These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abundance of protein-bound sulfhydryl and disulfide groups at chromosomal nucleolus organizing regions: a cytochemical study on the selective silver staining of NORs.
    Author: Buys CH, Osinga J.
    Journal: Chromosoma; 1980; 77(1):1-11. PubMed ID: 6154565.
    Abstract:
    Silver stainability of the chromosomal nucleolus organizing regions that contain the structural genes for ribosomal RNA can be abolished by proteolytic and oxidative treatments. Histone extraction has no effect. This indicates that reducing groups of non-histone chromosomal proteins are responsible for silver staining. Treatment with fluorescent sulfhydryl and disulfide specific reagents followed by silver staining demonstrates coincidence of silver dots and brightly fluorescent spots at the short arms of human acrocentric chromosomes where ribosomal RNA-genes are located. After treatment with cupric sulfite reagent in the presence of urea fluorescence and silver staining was no longer possible. Silver staining has been reported to be associated with ribosomal RNA-gene activity. Acrocentric chromosomes that are negative in silver staining also lack the brightly fluorescent spots. Therefore, we conclude that an abundance of protein-bound sulfhydryl and disulfide groups occur at nucleolar organizing regions with active genes. Differentially fluorescing spots could not be observed after staining with fluorescamine. So, either the sulfhydryl reagents used in this study are much more sensitive than fluorescamine to study protein distributions in cytological preparations, or our observations point to a local accumulation of some specific protein(s) rich in sulfhydryls. The presence of many sulfhydryl and disulfide groups at the nucleolus organizing regions seems suggestive of a great flexibility of protein(s) by transition of sulfhydryl groups to disulfide bridges and vice versa at these highly active regions of the genome.
    [Abstract] [Full Text] [Related] [New Search]