These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell growth optimization in microcarrier culture. Author: Mered B, Albrecht P, Hopps HE. Journal: In Vitro; 1980 Oct; 16(10):859-65. PubMed ID: 6158473. Abstract: Three monkey kidney cell lines and primary chicken embryo cells were grown in microcarrier culture. The carrier support was DEAE-Sephandex gel beads at low anion exchange capacity prepared according to a protocol developed at the Massachusetts Institute of Technology. The growth rate of the cells and the final cell density in microcarrier culture was dependent on the concentration of the beads in culture and on the size of the initial cell inoculum. A bead concentration of 1.0 to 2.0 mg of beads/ml of tissue culture medium and a cell inoculum of 20,000 cells/cm2 of bead surface appeared to be optimal. The efficiency of the microcarrier culture system was compared to that of stationary and roller bottle cultures. Stationary flasks gave cell densities about twofold higher than maximal densities in roller bottles and about threefold and twofold higher than cell densities in microcarrier culture at a bead concentration of 2.5 and 1.0 mg/ml, respectively. In terms of cell yield per milliliter of tissue culture medium, the microcarrier culture was superior to roller bottle and stationary cultures. An advantage of the microcarrier culture system is its suitability for scale up into large volume production units.[Abstract] [Full Text] [Related] [New Search]