These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of (2'-5')(A)n from ATP. Characteristics of the reaction catalyzed by (2'-5')(A)n synthetase purified from mouse Ehrlich ascites tumor cells treated with interferon.
    Author: Samanta H, Dougherty JP, Lengyel P.
    Journal: J Biol Chem; 1980 Oct 25; 255(20):9807-13. PubMed ID: 6159349.
    Abstract:
    The treatment of Ehrlich ascites tumor cells with mouse interferon increases the level of the latent enzyme (2'-5')(A)n synthetase. If activated by double-stranded RNA, this catalyzes the synthesis from ATP of a series of 2'-5'-oligoadenylates: (2'-5')(A)n where n extends from 2 to about 15. We isolated (2'-5')(A)n synthetase in a homogeneous state. In the presence of double-stranded RNA, the purified enzyme can convert the large majority (about 97%) of the ATP into (2'-5')(A)n and pyrophosphate, although it does not cleave the pyrophosphate. The stoichiometry of the reaction can be formulated as: (n + I) ATP leads to (2'-5') pppA(pA)n + n pyrophosphate. Added pyrophosphate does not inhibit the synthesis of (2'-5')(A)n. The extent of the reverse reaction, i.e. the pyrophosphorolysis of (2'-5')(A)n, was below the level of detection under our conditions. The affinity of the enzyme for ATP is low: the rate of the reaction increases by about 10% when the concentration of ATP is increased from 5 mM to 10 mM. The optimal concentration of double-stranded RNA increases with the concentration of the enzyme. As tested at 0.4, 2, and 10 micrograms/ml of enzyme concentrations, close to maximal (2'-5')(A)n synthesis can be obtained if reovirus double-stranded RNA or poly(I) . poly(C) are used at about half the concentration (in w/v) of the enzyme. The plot of the reaction rate versus enzyme concentration is sigmoidal. It remains to be seen if this reflects on a cooperative behavior of the enzyme.
    [Abstract] [Full Text] [Related] [New Search]