These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effect of various precursors on the synthesis of adenine and uracil nucleotides in the rat heart (author's transl)]. Author: Verdetti J, Aussedat J, Rossi A. Journal: J Physiol (Paris); 1980; 76(7):693-8. PubMed ID: 6163848. Abstract: The dynamics of cardiac adenine and uracil nucleotides, following a subcutaneous injection of isoproterenol, was studied on the rat in vivo. The effect of continuous supply of adenosine, uridine, or ribose on the level of ATP and UTP was investigated on control rats and on isoproterenol-treated animals. The precursors were administered by continuous infusion (1 ml.h-1) into the superior caval vein. 1. ATP and UTP levels were decreased within one hour after a single dose of isoproterenol (5 mg.kg-1) (Fig. 1). 2. Then, the level of ATP rose slowly toward the control value. The normal level was not reached within 48 h (Fig. 1). 3. On the contrary, the initial drop in UTP concentration was followed by a rapid restoration. The control value was reached in 3 h, and then the UTP pool was increased to 180% of the normal level, 12 h after isoproterenol application. 4. As previously shown by other authors, the restoration of ATP was accelerated by a continuous supply of adenosine (37 micromoles per hour) or ribose (170 micromoles per hour) (Fig. 2). 5. The infusion of ribose (170 micromoles per hour) or uridine (41 micromoles per hour) completely suppressed the initial decrease in UTP level caused by beta-receptor stimulation. The further enlargement of the UTP pool was greatly enhanced by ribose or uridine (Fig. 3). 6. The infusion of adenosine was also positive on UTP regeneration. On the contrary, uridine had no effect on the ATP pool (Fig. 3). 7. When supplied to non-treated animals, all precursors caused an enhancement of the UTP level. Adenosine and ribose increased the ATP pool (Fig. 2 and 3). These results contribute to the comparison of the efficiency of the various pathways of cardiac nucleotide synthesis. They show that both de novo synthesis and salvage pathways are limited by the amount of precursors. The increase in UTP synthesis caused by ribose is consistent with the theory put forward for purines (ZIMMER et GERLACH, 1974) that phosphoribosyl-pyrophosphate availability limits the efficiency of de novo synthesis of nucleotides; it demonstrates that this concept is also true for de novo synthesis of pyrimidine nucleotides.[Abstract] [Full Text] [Related] [New Search]