These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A search for a defect of proximal transport in denervated kidneys of conscious dogs. Author: Sadowski J, Kurkus J. Journal: Arch Int Physiol Biochim; 1981 May; 89(2):149-57. PubMed ID: 6167232. Abstract: The influence of renal nerves on proximal Na+ reabsorption was studied in clearance experiments with unilaterally renal-denervated conscious dogs prepared by surgical bladder division. Two types of experiments were made : A. maximal water diuresis, and B. Total blockade of distal NaCl reabsorption with ethacrynic acid and chlorothiazide. In maximal water diuresis CH2O + CNa was used as a measure of fluid delivery to the distal nephron. At similar GFR on both sides, the proximal reabsorption estimated as GFR--(CH2O + CNa) was 38.4 +/- 5.6 ml/min for the intact and 35.9 +/- 4.2 ml/min for the denervated kidney (n = 6, difference NS). After distal tubular blockade, proximal Na+ reabsorption calculated as filtered load minus urinary excretion was 3.84 +/- 0.43 mmol/min for the intact and 3.91 +/- 0.36 mmol/min for the denervated kidney (n = 6, difference NS). The fractional reabsorption of NA+ was 64.9 +/- 1.0% for the intact and 66.9 +/- 1.1% for the denervated kidney (difference NS). In contrast to data from renal denervation studies with anaesthetized animals, the present experiments did not show any difference in proximal reabsorption between the innervated- and denervated kidney. We conclude that in absence of anaesthesia renal efferent nerves have no major effect on NaCl transport in dog proximal tubule.[Abstract] [Full Text] [Related] [New Search]