These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Small reovirus particle composed solely of sigma NS with specificity for binding different nucleic acids. Author: Gomatos PJ, Prakash O, Stamatos NM. Journal: J Virol; 1981 Jul; 39(1):115-24. PubMed ID: 6168769. Abstract: We reported previously that polycytidylate [poly(C)]-dependent RNA polymerase activity was a property of small spherical or triangular reovirus-specific particles which sedimented at 13 to 19S and were composed solely of the reovirus protein, sigma NS. Depending on the fraction of cellular extracts from which they were obtained, these particles exhibited marked differences in stability. Most 13 to 19S particles from a particular fraction repeatedly disaggregated into smaller 4 to 5S subunits with no enzymatic activity. Disruption of many particles could be prevented and polymerase activity retained after these particles had bound different single-stranded (ss) RNAs. Our previous results indicated that there was heterogeneity among the 13 to 19S particles in that possession of poly(C)-dependent RNA polymerase activity was a property of only some. Support for this heterogeneity was derived from the demonstration in this report that there were at least three types of binding sites present within particles in any purified preparation: (i) those binding only poly(C); (ii) those binding only reovirus ss RNAs; and (iii) those binding one or the other, but not both at the same time. It is suggested that only those particles able to bind either poly(C) or reovirus ss RNAs had poly(C)-dependent RNA polymerase activity, as reovirus ss RNAs markedly inhibited the polymerase activity. All three size classes of reovirus ss RNAs were equally effective in binding, but once bound, they were not copied. It is possible that heterogeneity in binding capacity of different particles comprised of only one protein, sigma NS, could result from the ability of subunits containing this protein to assemble into slightly different 13 to 19S particles with specificity of binding or polymerase activity conferred by the configuration of the assembled particles. The high capacity of sigma NS to bind many different nucleic acids with some specificity suggests that these particles may act during infection as condensing agents to bring together 10 reovirus ss RNA templates in preparation for double-stranded RNA synthesis.[Abstract] [Full Text] [Related] [New Search]