These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferential binding of chlordecone to the protein and high density lipoprotein fractions of plasma from humans and other species. Author: Soine PJ, Blanke RV, Guzelian PS, Schwartz CC. Journal: J Toxicol Environ Health; 1982 Jan; 9(1):107-18. PubMed ID: 6174734. Abstract: The preferential distribution of the relatively nonpolar pesticide chlordecone (CD) to liver rather than to fat tissues in humans suggests that it may be transported in plasma differently from other organochlorine pesticides. The plasma binding of [14C] CD was investigated in vitro in human, rat, and pig plasma and in vivo in rat plasma. Protein and lipoprotein fractions were separated by serial ultracentrifugation. Heparin-manganese precipitation and agarose gel electrophoresis were also carried out to determine whether separation techniques altered CD binding to plasma components. In human plasma, the distribution of [14C] CD among proteins and high density, low density, and very low density lipoproteins (HDL, LDL, and VLDL) was 46, 30, 20, and 6%, respectively. The distribution of cholesterol in the same plasma fractions was 4, 20, 63, and 7%, respectively. In the pig and rat the order of binding was similar to that in humans, with protein greater than or equal to HDL greater than LDL greater than or equal to VLDL. Separation by heparin-Mn precipitation confirmed the results obtained by ultracentrifugation. The distribution of [14C] CD in rat lipoprotein was similar whether the CD was administered in vivo or incubated with plasma in vitro, with approximately 80% bound to HDL, 11% to LDL, and 9% to VLDL in either case. Agarose gel electrophoresis of plasma-bound [14C] CD indicated that albumin was the major component of the protein fraction responsible for CD binding. Preferential binding of CD by albumin and HDL may explain its unusual tissue distribution compared to other organochlorine pesticides such as aldrin and dieldrin, which bind preferentially to VLDL and LDL and distribute preferentially to fat tissues.[Abstract] [Full Text] [Related] [New Search]