These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Substance P as an excitatory transmitter of primary afferent neurons in guinea-pig sympathetic ganglia.
    Author: Tsunoo A, Konishi S, Otsuka M.
    Journal: Neuroscience; 1982; 7(9):2025-37. PubMed ID: 6183613.
    Abstract:
    Electrophysiological and neurochemical experiments were carried out to examine a possible transmitter role substance P in the prevertebral ganglia of the guinea-pig. When potentials were recorded intracellularly from neurons of the isolated ganglia, stimulation of the pre- or postganglionic nerves elicited a non-cholinergic slow excitatory postsynaptic potential (EPSP). This synaptic potential was compared with the effects of substance P. Brief application of substance P caused a depolarization of the ganglion cells with a similar time course to that of the non-cholinergic slow EPSP. Changes in membrane resistance during the substance P-induced depolarization resembled those associated with the non-cholinergic slow EPSP. During the substance P-induced depolarization the non-cholinergic slow EPSP was markedly depressed. Attempts were made to determine the origin of the fibers eliciting the non-cholinergic slow EPSP. In the inferior mesenteric ganglia isolated together with preganglionic nerves that retained intact connections with spinal nerve roots, dorsal root stimulation evoked a non-cholinergic slow EPSP but not a cholinergic fast EPSP in the ganglion cells, whereas ventral root stimulation caused only cholinergic fast EPSPs. Following the prolonged treatment with capsaicin, the non-cholinergic slow EPSP was greatly depressed or abolished. Radioimmunoassay revealed that after ligation or section of pre- or postganglionic nerves an accumulation of substance P occurred in the proximal stumps of the interrupted nerves. Stimulation with high potassium medium evoked a release of immunoreactive substance P from the prevertebral ganglia and the release was calcium-dependent. The present findings suggests that axon collaterals of certain visceral primary efferents form synapses with principal cells in the prevertebral ganglia and release substance P as a transmitter for the non-cholinergic slow EPSP.
    [Abstract] [Full Text] [Related] [New Search]