These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical characterization of a specific phosphate acceptor of nuclear cyclic AMP-independent protein kinase.
    Author: Ohtsuki K, Shiraishi H, Sato T, Ishida N.
    Journal: Biochim Biophys Acta; 1982 Oct 28; 719(1):32-9. PubMed ID: 6184076.
    Abstract:
    The regulatory mechanism of transcription involved in the phosphorylation of a 13 kDa non-histone chromatin protein from calf thymus, which is the most effective phosphate acceptor for cyclic AMP-independent protein kinase purified from the nuclei of mouse spleen cells, by the kinase has been studied in vitro. An analytical study of the circular dichroism (CD) spectra of the 13 kDa protein under different conditions showed that it underwent a major conformational change when incubated with DNA. The presented data suggest that the DNA-induced conformational change may result in a great increase of the 13 kDa protein phosphorylation by the kinase in vitro. Mg2+ (8-10 mM) enhanced the binding of the protein to DNA. Furthermore, the phosphorylated 13 kDa protein stimulated elongation of RNA synthesis by RNA polymerase II from calf thymus. However, neither the 13 kDa protein nor the phosphorylated 13 kDa protein had any affect on DNA synthesis. The available evidence suggests that the 13 kDa protein may play a role in the regulation of transcription through its phosphorylation by the kinase in vitro.
    [Abstract] [Full Text] [Related] [New Search]