These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of RNA synthesis in an Escherichia coli mutant with a temperature-sensitive lesion in stable RNA synthesis. Author: Williams DE, Jackson JM, Chaney SG. Journal: J Bacteriol; 1983 Feb; 153(2):616-26. PubMed ID: 6185464. Abstract: Previous experiments with Escherichia coli strain 2S142 have shown that the synthesis of stable RNA is preferentially blocked at the restrictive temperature. In this paper, we have examined the capacity of this mutant strain to synthesize RNA in vitro. Growth of the strain for as short a period as 10 min at 42 degrees C resulted in a 40 to 60% loss of RNA synthetic capacity and a fourfold decrease in percent rRNA synthesized in toluenized cell preparations. The time course for the loss and recovery of this RNA synthetic capacity correlated very well with the changes in RNA synthesis observed in vivo. We found no difference in temperature sensitivity of the purified RNA polymerase from the mutant and the parental strains. Moreover, there was no detectable alteration in the amount of enzyme, specific activity of the enzyme, or electrophoretic mobility of the subunits when the mutant strain was grown at 42 degrees C. The capacity for rRNA synthesis was also measured with the Zubay in vitro system (Reiness et al., Proc. Natl. Acad. Sci. 72:2881-2885, 1975). Supernatant fractions (S-30) prepared from cells grown at 30 degrees C were capable of up to 31.2% rRNA synthesis, using phi 80d3 DNA as template. S-30 fractions from cells grown at 42 degrees C synthesized 8.6% rRNA. The bottom one-third of the S-100 fraction and the ribosomal salt wash from 30 degrees C cells contained one or more factors which partially restored preferential rRNA synthesis in S-30 fractions from cells grown at 42 degrees C. Preliminary evidence suggests that the factor(s) is protein in nature.[Abstract] [Full Text] [Related] [New Search]