These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anaphylactic release of a prekallikrein activator from human lung in vitro.
    Author: Meier HL, Kaplan AP, Lichtenstein LM, Revak S, Cochrane CG, Newball HH.
    Journal: J Clin Invest; 1983 Aug; 72(2):574-81. PubMed ID: 6192147.
    Abstract:
    We have demonstrated the in vitro IgE-mediated release of a prekallikrein activator from human lung. The lung prekallikrein activator was partially purified by sequential chromatography on sulfopropyl-Sephadex, DEAE-Sephacel, and Sepharose 6B. Purified human prekallikrein was converted to its active form (kallikrein) by the lung protease. The generated kallikrein was shown to be biologically active; that is, it generates bradykinin from purified human high-molecular weight kininogen and also cleaves benzoyl-propyl-phenyl-arginyl-p-nitroanilide, a known synthetic substrate of kallikrein. The lung prekallikrein activator differs from the known physiologic activators of prekallikrein (the activated forms of Hageman factor) with respect to: (a) size (it has a mol wt of approximately 175,000); (b) synthetic substrate specificity (D-propyl/phenyl/arginyl-p-nitroanilide is a substrate for the activated forms of Hageman factor, but not the lung protease); (c) antigenic specificity (an anti-Hageman factor immunoadsorbent column did not remove significant amounts of the lung protease, while it removed most of the activity of activated Hageman factor fragments); and (d) inhibition profile (the lung proteases was not inhibited by corn trypsin inhibitor). This prekallikrein activator provides a physiologic mechanism by which prekallikrein can be directly activated during IgE-mediated reactions of the lung. While the role of this lung prekallikrein activator in immediate hypersensitivity reactions and in other inflammatory processes is not clear, it does represent a first and important interface between IgE-mediated reactions and the Hageman factor-dependent pathways of the inflammatory response.
    [Abstract] [Full Text] [Related] [New Search]