These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Idiotype profile of an immune response. II. Reversal of the relative dominance of major and minor cross-reactive idiotypes in arsonate-specific T-independent responses.
    Author: Conger JD, Lamoyi E, Lewis GK, Nisonoff A, Goodman JW.
    Journal: J Exp Med; 1983 Aug 01; 158(2):438-51. PubMed ID: 6193221.
    Abstract:
    Two different cross-reactive idiotype (CRI) groups are distinguishable in the Ab response of A/J mice to the p-azobenzenearsonate (ABA) hapten: CRIA and CRIm. These two groups showed distinct patterns of relative dominance in the ensuing response depending on whether the inducing Ag was a T cell-dependent (TD) form of ABA, such as ABA-KLH or ABA-CGG, or a T-independent type 1 (TI-1) form, such as ABA-Brucella abortus or ABA-lipopolysaccharide (LPS), and on whether the response was elicited in vivo or in vitro. The CRI+ component of primary in vivo plaque-forming cell (PFC) responses to TD ABA Ags was largely (greater than 90%) CRIA+ as was, to a slightly lesser extent (greater than 75%) the CRI+ portion of secondary or hyperimmune serum Ab or PFC responses to the same Ags. In contrast, in vivo primary and hyperimmune PFC responses to ABA-Bru or ABA-LPS showed a significantly lower CRIA/CRI ratio, averaging 0.5-0.6, with some individual mice giving figures as low as 0.2, indicating predominance of CRIm over CRIA. Serological analysis of hyperimmune anti-ABA Abs from a group of 5 A/J mice immunized with ABA-Bru gave a figure of less than 0.5 for the CRIA/CRI ratio. The most striking disparity from the TD pattern was seen in primary in vitro PFC responses to the TI ABA Ags; here ratios of less than 0.2 were generally seen. Since T cell removal did not alter the Id pattern in the TI responses, CRIA-specific Ts cells do not account for the weak expression of CRIA in such responses. We propose a model that explains these results on the basis of differential expression of IdX dominance by two distinct B cell subpopulations--equatable to the Lyb-5+ and Lyb-5- B cell subsets--along with differential relative activation of these subsets in different types of responses. Examination of anti-ABA PFC responses of F1 progeny of CBA/N and A/J mice to ABA-Bru lends support to this hypothesis since CRIA expression was significantly lower in mice with the xid defect.
    [Abstract] [Full Text] [Related] [New Search]