These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reconstitution mechanism of nucleosome core particles mediated by poly(L-glutamic acid). Author: Oohara I, Suyama A, Wada A. Journal: Biochim Biophys Acta; 1983 Dec 22; 741(3):322-32. PubMed ID: 6197089. Abstract: Poly(L-glutamic acid) has been reported to mediate in vitro nucleosome assembly (Stein, A., Whitlock, J.P., Jr. and Bina, M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76,5000-5004). To study the reaction mechanism, we have reconstituted nucleosome core particles from chicken erythrocyte core DNA and core histones in the presence of poly(L-glutamic acid) and analyzed the assembly products by polyacrylamide gel electrophoresis. Poly(L-glutamic acid), which binds and forms a large complex with core histones, is replaced with core DNA in the reconstitution process. When histone-poly(L-glutamic acid) complex and core DNA are mixed with a histone:DNA ratio of 1.0, the yield of core particles increases by prolonged reconstitution time. Two phases with a distinct time range appear in the process. In the fast phase within 30 min, 60% of the DNA is involved in products containing histones: reconstituted core particles, a larger nucleoprotein complex and aggregation. In the second phase, the remaining DNA and the DNA in the aggregation decrease, and the core particles increase slowly. The yield of core particles is approx. 60% after 24 h. The slow phase is not observed by reconstitution with a histone:DNA ratio of 2.0 in the initial mixture. The reaction scheme of the assembly process derived from these data is given. Based on the in vitro reaction scheme, the possible role of in vivo 'nucleosome assembly factors' is also discussed.[Abstract] [Full Text] [Related] [New Search]