These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rat esophageal and epidermal keratinocytes: intrinsic differences in culture and derivation of continuous lines. Author: Heimann R, Rice RH. Journal: J Cell Physiol; 1983 Dec; 117(3):362-7. PubMed ID: 6197421. Abstract: Serially cultivated with 3T3 feeder layer support as colonies of stratified squamous epithelium, rat epidermal and esophageal epithelial cells were readily distinguishable by three criteria. First, the epidermal colonies, exhibiting extensive piling up of squames in the centers, were more stratified than esophageal colonies. Second, in sparse culture 70 to 90% of the esophageal cells but as few as 1 to 5% of the epidermal cells were competent in cross-linked envelope formation upon treatment with the ionophore X537A. After reaching confluence, up to 90% of the cells of both types formed envelopes upon ionophore treatment. Third, epidermal cells in suspension culture reached maximal levels of spontaneously cross-linked envelopes in 1 day or less, while esophageal cells required about 4 days in suspension to reach maximal levels. A reproducible finding with both cell types was that initial colony-forming efficiencies of less than 1% increased to about 40% upon serial passage with consequent derivation of continuous lines. Sparse cultures of esophageal cells with high colony-forming ability retained a high degree of envelope competence (70 to 90%), indicating these two properties are not mutually exclusive. The derived lines exhibited reduced dependence upon feeder layer support at clonal density, but in suspension culture the cells did not grow and lost colony-forming ability with a half-time of several hours. We conclude that cells from these keratinized rat epithelia exhibit intrinsic differences in culture and become continuous lines expressing characteristic regulation of envelope competence and loss of germinative capability in suspension.[Abstract] [Full Text] [Related] [New Search]