These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolution of L-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas. Author: Byng GS, Whitaker RJ, Jensen RA. Journal: Arch Microbiol; 1983 Nov; 136(3):163-8. PubMed ID: 6197946. Abstract: Group I pseudomonads exhibit diversity for L-phenylalanine biosynthesis that is a basis for separation of two subgroups. Subgroup Ib (fluorescent species such as Pseudomonas aeruginosa, P. fluorescens, or P. putida) possesses an unregulated overflow pathway to L-phenylalanine, together with a second, regulated pathway. Subgroup Ia (non-fluorescent species such as P. stutzeri, P. mendocina, or P. alcaligenes) possess only the regulated pathway to L-phenylalanine. Thus, subgroup Ia species lack an unregulated isozyme of chorismate mutase and arogenate dehydratase, enzymes which are thought to divert chorismate to L-phenylalanine under conditions of high carbon input into aromatic biosynthesis. A priori the overflow pathway could have been either lost in subgroup Ia or gained in subgroup Ib. Since Group V pseudomonads (mainly Xanthomonas) are known to branch off from the Group I lineage at a deeper phylogenetic level than the point of divergence for subgroups Ia and Ib, the presence of the overflow pathway in Group V pseudomonads reveals that the overflow pathway must have been lost in the evolution of subgroup Ia. All Group I species possess a bifunctional protein (P-protein) which catalyzes both chorismate mutase and prephenate dehydratase reactions. In subgroup Ia species this highly conserved protein must be the sole source of prephenate to be used for tyrosine biosynthesis. Thus, the channeling action of the P-protein whereby chorismate is committed towards L-phenylalanine formation can be negated by selective feedback inhibition exerted by L-phenylalanine upon the prephenate dehydratase component of the P-protein. Diversion of prephenate molecules under the latter conditions towards L-tyrosine comprises a channel-shuttle mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]