These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of surface differences between two closely related cell populations by partitioning isotopically labeled mixed cell populations in two-polymer aqueous phases. I. Human red blood cell subpopulations.
    Author: Walter H, Krob EJ.
    Journal: Cell Biophys; 1983 Sep; 5(3):205-19. PubMed ID: 6199114.
    Abstract:
    The partition behavior of cells in dextran-poly(ethylene glycol) aqueous phases (i.e., the cells' relative affinity for the top or bottom phase or their adsorption at the interface) is greatly dependent on the polymer concentrations and ionic composition and concentration. Appropriate selection of phase system composition permits detection of differences in either charge-associated or lipid-related surface properties. We have now developed a method that can reveal differences by partitioning that fall within experimental error if one were to compare countercurrent distribution (CCD) curves of two closely related cell populations run separately. One cell population is isotopically labeled in vitro (e.g., with 51Cr-chromate) and is mixed with an excess of the unlabeled cell population with which it is to be compared. The mixture is subjected to CCD and the relative specific radio-activities are determined through the distribution. As control we also examine a mixture of labeled cells and unlabeled cells of the same population. The feasibility of this method was established by use of cell mixtures the relative partition coefficients of which were known. The procedure was then used to test for human erythrocyte subpopulations. 51Cr-chromate-labeled human young or old red blood cells were mixed with unfractionated erythrocytes and subjected to CCD in a phase system reflecting charge-associated properties. It was found that older cells had a high, young cells (probably only reticulocytes) a low partition coefficient. Because of the small differences involved these results were not previously obtained. It was further determined, by repartitioning 51Cr-labeled cells from the left or right ends of a CCD of human red blood cells admixed to unlabeled unfractionated erythrocytes, that a subpopulation with higher partition coefficient exists (probably constituting the old red cells). These experiments serve to illustrate (a) that human red blood cells, contrary to a previous report, can be subfractionated by partitioning and (b) the usefulness of this new method in detecting smaller surface differences between closely related cell populations than was heretofore possible by partitioning alone.
    [Abstract] [Full Text] [Related] [New Search]