These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of a range of antimicrobial agents against the parasitic protozoa, Plasmodium falciparum, Babesia rodhaini and Theileria parva in vitro.
    Author: McColm AA, McHardy N.
    Journal: Ann Trop Med Parasitol; 1984 Aug; 78(4):345-54. PubMed ID: 6206808.
    Abstract:
    Eighteen antimicrobials commonly used in tissue culture were screened in three different protozoan test systems in order to establish their suitability for routine inclusion in protozoal cultivation systems. The human malaria parasite, Plasmodium falciparum, was inhibited by more than half the antibiotics tested at concentrations recommended for normal tissue culture use. Eight compounds were well tolerated and thus could be used prophylactically to prevent microbial contamination. These antimicrobials were the bactericidal aminoglycoside antibiotics, streptomycin, gentamicin and kanamycin, the bacteriostatic protein synthesis inhibitors, chloramphenicol and chlortetracycline and the antifungals, 5-fluorocytosine, nystatin and amphotericin B. Babesia rodhaini and Theileria parva were less sensitive than P. falciparum and tolerated all 18 compounds at concentrations well above 100 micrograms ml-1. Extension of the study to examine direct antiprotozoal action of these and other antimicrobials not normally used in culture confirmed that P. falciparum was significantly more sensitive than the other parasites. Tylosin, rifamycin, gramicidin D and valinomycin were all strongly antimalarial with IC50 values of 0.245, 1.20, 1.3 X 10(-3) and 1.9 X 10(-3) micrograms ml-1 respectively. This compares with a value of 1.35 X 10(-2) micrograms ml-1 for the standard antimalarial, chloroquine. Only valinomycin and, more particularly, gramicidin D were significantly active against B. rodhaini and T. parva. Gramicidin D was more effective, but more toxic, than the standard antiprotozoal agents tested at curing in vivo malarial and babesial infections in mice.
    [Abstract] [Full Text] [Related] [New Search]