These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources. Author: Brooks AL, Li AP, Dutcher JS, Clark CR, Rothenberg SJ, Kiyoura R, Bechtold WE, McClellan RO. Journal: Environ Mutagen; 1984; 6(5):651-68. PubMed ID: 6207015. Abstract: This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. The tunnel samples were collected 30 m inside or 56 m outside the exit portal at times when between 70%-95% of the traffic consisted of diesel trucks. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. Extracts from two tunnel samples collected 1 yr apart, and extracts of particles collected outside the tunnel had similar mutagenic activity. The order of mutagenic activity per microgram of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel less than heavy-duty diesel less than light-duty diesel less than spark ignition. Addition of S-9 or testing in Salmonella strains resistant to the mutagenicity of nitroaromatic compounds (TA-98 NR and TA-98 1,8-DNP6) decreased the mutagenic response. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel less than light-duty less than spark-ignition samples. All three extracts induced a similar amount of mitotic delay per microgram with or without S-9. Enhanced chromosome aberration frequency was detected only in cells exposed to extracts from spark-ignition exhaust. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar.[Abstract] [Full Text] [Related] [New Search]