These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An oligomycin-resistant Mg2+-dependent ATPase in rabbit bone marrow mitochondria.
    Author: Abou-Khalil S, Abou-Khalil WH, Yunis AA.
    Journal: Mol Cell Biochem; 1982 Apr 16; 44(1):33-8. PubMed ID: 6211609.
    Abstract:
    Rabbit bone marrow mitochondria isolated by differential centrifugation showed typical oxypolarographic tracings with glutamate oxidation with ADP:O ratio of 2.9. Similar results were obtained with liver mitochondria of the same animal. When marrow mitochondria were oxydizing a substrate such as glutamate, added MgCl2 markedly stimulated state-4 respiration giving a respiratory rate identical to that of state-3. In contrast, no Mg2+-stimulation was observed with liver mitochondria. Oligomycin completely blocked the stimulation by Mg2+ but further addition of 2,4-dinitrophenol reactivated the oxygen consumption by uncoupling. Further purification of marrow mitochondria by density gradient centrifugation in Percoll provided identical oxypolarographic results. Moreover, when marrow mitochondria were incubated without Mg2+, they showed a low ATPase activity that was stimulated by 2,4-dinitrophenol and blocked by oligomycin. The presence of Mg2+ in the incubation medium uncovered an additional ATPase activity which was resistant to oligomycin and apparently unaffected by 2,4-dinitrophenol. It is concluded that bone marrow mitochondria possess two types of ATPase activity distinguished on the basis of their reactivity with oligomycin, 2,4-dinitrophenol and Mg2+.
    [Abstract] [Full Text] [Related] [New Search]