These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5'-triphosphate, an affinity label for adenosine 5'-triphosphate binding sites. Author: Lowe PN, Beechey RB. Journal: Biochemistry; 1982 Aug 17; 21(17):4073-82. PubMed ID: 6215060. Abstract: Periodate-oxidized ATP (o-ATP) was prepared as an affinity label of nucleotide binding sites on the chloroform-released ox heart mitochondrial ATPase. In the presence of MgSO4, o-ATP is a substrate for the ATPase. It can act as a reversible, competitive inhibitor of ATPase activity and can also induce an irreversible inhibition of ATPase activity. In parallel with the irreversible inhibition, covalent incorporation of [3H]o-ATP occurs. ATPase has about 1.05 mol of o-ATP bound per mol of ATPase when the enzyme is 50% inhibited. Most of the covalently bound o-ATP is associated with the alpha and beta subunits and is equally distributed between them. The incorporation of o-ATP into the ATPase is reduced, and the irreversible inhibition induced by o-ATP can be prevented totally by MgADP, MgATP, EDTA/ATP, or EDTA. The location, number, and the functional significance of the o-ATP binding sites are discussed. o-ATP can decompose to form an adenosine-containing compound and the tripolyphosphate anion in a beta-elimination reaction mechanism. The structures of the adenine-containing compound and its borohydride reduction product were determined. The adenine-containing elimination product inhibited the mitochondrial ATPase activity at a rate greater than that observed with o-ATP. The nature and mechanism of the inhibition of ATPase activity exerted by o-ATP and the elimination product were examined. The significance of the beta-elimination reaction to the use of periodate-oxidized nucleotides as affinity labels of nucleotide binding sites on other proteins is discussed.[Abstract] [Full Text] [Related] [New Search]