These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of cell-mediated immunity in cryptococcosis. II. Characterization of first-order T suppressor cells (Ts1) and induction of second-order suppressor cells.
    Author: Murphy JW, Mosley RL, Moorhead JW.
    Journal: J Immunol; 1983 Jun; 130(6):2876-81. PubMed ID: 6222119.
    Abstract:
    Cryptococcosis patients frequently have high levels of cryptococcal antigen in their body fluids, and the levels of circulating antigen can generally be used to predict the patient's recovery, with high or rising antigen titers indicating a poor prognosis and low or decreasing levels a good prognosis. In a previous study, we reported on a murine model for studying the effects of cryptococcal antigen on host defense mechanisms. In that work, we demonstrated that an i.v. injection of cryptococcal antigen (CneF) into CBA/J mice, to simulate the antigenemia known to occur in human cryptococcosis, induced a population of T suppressor cells (Ts1) in the lymph nodes (LN). Upon adoptive transfer, the Ts1 cells specifically suppressed the afferent limb of the delayed-type hypersensitivity (DTH) response to cryptococcal antigen. In the present study, we show that the precursors of the Ts1 cells are sensitive to low-dose cyclophosphamide treatment and that the phenotype of the Ts1 cells is Lyt-1+, Ia+ (I-J+). LN cells from CneF-injected mice or a soluble factor derived therefrom can induce in the spleens of recipient mice a second-order suppressor cell population that suppresses the efferent limb of the DTH response. The cells that induce the second-order or efferent suppressor cells have the same phenotype as the cells that appear to suppress the afferent limb of the DTH response. The findings in this study indicate that a complex regulatory mechanism is responsible for the observed suppression of the DTH response in this infectious disease model. Furthermore, the suppressive circuit thus far defined for cryptococcal antigen is similar to the antigen-specific suppressor cell pathway outlined for certain chemically defined haptenic systems.
    [Abstract] [Full Text] [Related] [New Search]