These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II). Author: Van Dyke MW, Dervan PB. Journal: Biochemistry; 1983 May 10; 22(10):2373-7. PubMed ID: 6222762. Abstract: The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.[Abstract] [Full Text] [Related] [New Search]