These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stoichiometry of H+/amino acid cotransport in Neurospora crassa revealed by current-voltage analysis. Author: Sanders D, Slayman CL, Pall ML. Journal: Biochim Biophys Acta; 1983 Oct 26; 735(1):67-76. PubMed ID: 6226314. Abstract: Coupling of ions to the uptake of neutral and basic amino acids via a general amino acid transport system (System II), was studied in a mutant of Neurospora crassa (bat mtr) which lacks other transport systems for these solutes. All amino acids tested--including ones bearing no net charge--elicited rapid membrane depolarization, as expected for ion-coupled transport. (Since amino acid transport in Neurospora is not dependent on extracellular Na+ or K+, the associated ion is presumed to be H+.) Although the 14C-labeled amino acid fluxes through System II are largely independent of the identity of the amino acid, the depolarization caused by basic amino acids (L-lysine and L-ornithine) is 60-70% greater than that for neutral amino acids (e.g. L-leucine). This difference is consistent with a constant H+/amino acid stoichiometry of 2, the extra charge for lysine and ornithine being that on the amino acid itself, so that the charge ratio basic:neutral amino acids is 3:2. When actual membrane charge flow associated with amino acid uptake was compared with measured 14C-labeled amino acid influx, ratios of 2.07 charges/mol L-leucine and 3.40 charges/mol L-lysine were obtained, again in accord with a constant translocation stoichiometry of 2H+/amino acid. The advantages of this electrical method for estimating H+/solute stoichiometry in cotransport are discussed in relation to more familiar methods.[Abstract] [Full Text] [Related] [New Search]