These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histamine action on guinea pig ileal mucosa.
    Author: Cooke HJ, Nemeth PR, Wood JD.
    Journal: Am J Physiol; 1984 Apr; 246(4 Pt 1):G372-7. PubMed ID: 6232856.
    Abstract:
    Nerve-mediated and direct actions of histamine on mucosal transport function in the guinea pig ileum were investigated. Addition of histamine to the serosal side of flat sheet preparations in Ussing chambers evoked a transient increase in base-line short-circuit current that was due primarily to an increase in active chloride secretion. The mucosal response to histamine was mimicked by the H1-receptor agonist 2-methylhistamine, but not by the H2-receptor agonist dimaprit. The histamine-evoked response was prevented by the H1-receptor blocker pyrilamine, but not by the H2-receptor antagonist cimetidine. Thirty percent of the mucosal response to histamine was inhibited by tetrodotoxin. Intracellular electrical recording showed that histamine activated AH/type 2 myenteric neurons, and this response was abolished in the presence of pyrilamine. Local anesthetic action of pyrilamine was ruled out by direct electrical recording from myenteric neurons in the presence and absence of pyrilamine. Electrical field stimulation evoked a biphasic increase in short-circuit current. Histamine and 2-methylhistamine did not alter the sustained phase of the short-circuit current response to electrical field stimulation, although pyrilamine reduced the electrically evoked response by 22%. Muscarinic blockade with atropine reduced the stimulus-evoked response by 55%. When muscarinic receptors were blocked and electrical field stimulation applied, histamine increased the stimulus-evoked mucosal response by 22.3%. These results suggest that histamine increases short-circuit current and chloride secretion by acting at H1-receptor sites on both the enteric innervation of the mucosa and on the enterocytes.
    [Abstract] [Full Text] [Related] [New Search]