These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of DNA lesions produced by HgCl2 in cell culture systems.
    Author: Cantoni O, Christie NT, Robison SH, Costa M.
    Journal: Chem Biol Interact; 1984 Apr; 49(1-2):209-24. PubMed ID: 6233017.
    Abstract:
    HgCl2 is extremely cytotoxic to Chinese hamster ovary (CHO) cells in culture since a 1-h exposure to a 75- microM concentration of this compound reduced cell plating efficiency to 0 and cell growth was completely inhibited at 7.5 microM . The level of HgCl2 toxicity depended upon the culture incubation medium and has previously been shown to be inversely proportional to the extracellular concentration of metal chelating amino acids such as cysteine. Thus, HgCl2 toxicity in a minimal salts/glucose maintenance medium was about 10-fold greater than the toxicity in McCoy's culture medium. The HgCl2 toxicity in the latter medium was 3-fold greater than that in alpha-MEM which contains more of the metal chelating amino acids. When cells were exposed to HgCl2 there was a rapid and pronounced induction of single strand breaks in the DNA at time intervals and concentrations that paralleled the cellular toxicity. The DNA damage was shown to be true single strand breaks and not alkaline sensitive sites or double strand breaks by a variety of techniques. Consistent with the toxicity of HgCl2, the DNA damage under an equivalent exposure situation was more pronounced in the salts/glucose than in the McCoy's medium and more striking in the latter medium than in alpha-MEM. Most of the single strand breaks occurred within 1 h of exposure to the metal. We believe that the DNA damage caused by HgCl2 leads to cell death because the DNA single strand breaks are not readily repaired. DNA repair activity measured by CsCl density gradient techniques was elevated above the untreated levels at HgCl2 concentrations that produced little measurable binding of the metal to DNA or few single strand breaks assessed by the alkaline elution procedure. DNA repair activity decreased at HgCl2 concentrations that produced measurable DNA binding and single strand breaks. These irreversible interactions of HgCl2 with DNA may be responsible for its cytotoxic action in cells.
    [Abstract] [Full Text] [Related] [New Search]